Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Genes Chromosomes Cancer ; 63(3): e23227, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38517106

RESUMEN

AIMS: Kinase fusion-positive soft tissue tumors represent an emerging, molecularly defined group of mesenchymal tumors with a wide morphologic spectrum and diverse activating kinases. Here, we present two cases of soft tissue tumors with novel LTK fusions. METHODS AND RESULTS: Both cases presented as acral skin nodules (big toe and middle finger) in pediatric patients (17-year-old girl and 2-year-old boy). The tumors measured 2 and 3 cm in greatest dimension. Histologically, both cases exhibited bland-looking spindle cells infiltrating adipose tissue and accompanied by collagenous stroma. One case additionally displayed perivascular hyalinization and band-like stromal collagen. Both cases exhibited focal S100 staining, and one case had patchy coexpression of CD34. Targeted RNA-seq revealed the presence of novel in-frame MYH9::LTK and MYH10::LTK fusions, resulting in upregulation of LTK expression. Of interest, DNA methylation-based unsupervised clustering analysis in one case showed that the tumor clustered with dermatofibrosarcoma protuberans (DFSP). One tumor was excised with amputation with no local recurrence or distant metastasis at 18-month follow-up. The other case was initially marginally excised with local recurrence after one year, followed by wide local excision, with no evidence of disease at 10 years of follow-up. CONCLUSIONS: This is the first reported case series of soft tissue tumors harboring LTK fusion, expanding the molecular landscape of soft tissue tumors driven by activating kinase fusions. Furthermore, studies involving a larger number of cases and integrated genomic analyses will be warranted to fully elucidate the pathogenesis and classification of these tumors.


Asunto(s)
Neoplasias de los Tejidos Conjuntivo y Blando , Proteínas de Fusión Oncogénica , Neoplasias Cutáneas , Neoplasias de los Tejidos Blandos , Adolescente , Niño , Femenino , Humanos , Masculino , Antígenos CD34/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de los Tejidos Conjuntivo y Blando/genética , Neoplasias de los Tejidos Conjuntivo y Blando/patología , Proteínas Tirosina Quinasas Receptoras , Neoplasias Cutáneas/patología , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología , Proteínas de Fusión Oncogénica/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética
2.
Genet Med ; 24(10): 2065-2078, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35980381

RESUMEN

PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.


Asunto(s)
Trastornos del Neurodesarrollo , Miosina Tipo IIB no Muscular , Actinas , Cilios/genética , Proteínas Hedgehog/genética , Humanos , Cadenas Pesadas de Miosina/genética , Trastornos del Neurodesarrollo/genética , Miosina Tipo IIB no Muscular/genética
3.
Eur J Cell Biol ; 101(2): 151213, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35257961

RESUMEN

Nonmuscle myosin II minifilaments have emerged as central elements for force generation and mechanosensing by mammalian cells. Each minifilament can have a different composition and activity due to the existence of the three nonmuscle myosin II paralogs A, B and C and their respective phosphorylation pattern. We have used CRISPR/Cas9-based knockout cells, quantitative image analysis and mathematical modeling to dissect the dynamic processes that control the formation and activity of heterotypic minifilaments and found a strong asymmetry between paralogs A and B. Loss of NM IIA completely abrogates regulatory light chain phosphorylation and reduces the level of assembled NM IIB. Activated NM IIB preferentially co-localizes with pre-formed NM IIA minifilaments and stabilizes the filament in a force-dependent mechanism. NM IIC is only weakly coupled to these processes. We conclude that NM IIA and B play clearly defined complementary roles during assembly of functional minifilaments. NM IIA is responsible for the formation of nascent pioneer minifilaments. NM IIB incorporates into these and acts as a clutch that limits the force output to prevent excessive NM IIA activity. Together these two paralogs form a balanced system for regulated force generation.


Asunto(s)
Miosina Tipo IIA no Muscular , Miosina Tipo IIB no Muscular , Animales , Citoesqueleto/metabolismo , Mamíferos/metabolismo , Miosina Tipo II , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Fosforilación
4.
Cancer Lett ; 524: 245-258, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715250

RESUMEN

The stiffening of the extracellular matrix (ECM) during tumor progression results in an increase in cancer cell motility. In cell migration, two major isoforms of non-muscle myosin II (NMII), NMIIA and NMIIB, are expressed and assembled into the cytoskeleton. However, the isoform-specific regulatory roles of NMIIA and NMIIB as well as the underlying mechanisms in response to mechanical cues of the ECM are still elusive. Here, based on polyacrylamide (PAA) gels with tunable elastic modulus, we mimicked the mechanical properties of tumor tissue at different stages of breast cancer in vitro and investigated the distinct roles of NMII isoforms in the regulation of substrate stiffness. We demonstrate that NMIIA is engaged in establishing cell polarity by facilitating lamellipodia formation, focal adhesion turnover, and actin polymerization at the cell leading edge, while NMIIB is recruited to the cell perinuclear region and contributes to traction force generation and polarized distribution, both in a substrate stiffness-dependent manner. We further validated that substrate stiffness modulates the distribution and activation of NMII isoforms via the Rac1/p-PAK1/pS1916-NMIIA and PKCζ/pS1935-NMIIB signaling pathways in a site- and kinase-specific phosphoregulation manner. Our study is helpful for understanding the mechanotransduction of cancer cells and provides inspiration for molecular targets in antimetastatic therapy.


Asunto(s)
Neoplasias de la Mama/genética , Matriz Extracelular/genética , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIB no Muscular/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Polaridad Celular/genética , Femenino , Humanos , Mecanotransducción Celular/genética , Isoformas de Proteínas/genética , Transducción de Señal/genética , Especificidad por Sustrato , Quinasas p21 Activadas/genética , Proteína de Unión al GTP rac1/genética
5.
Circ Res ; 130(1): 112-129, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34816743

RESUMEN

BACKGROUND: Mutations in genes encoding sarcomeric proteins lead to failures in sarcomere assembly, the building blocks of contracting muscles, resulting in cardiomyopathies that are a leading cause of morbidity and mortality worldwide. Splicing variants of sarcomeric proteins are crucial at different stages of myofibrillogenesis, accounting for sarcomeric structural integrity. RBM24 (RNA-binding motif protein 24) is known as a tissue-specific splicing regulator that plays an essential role in cardiogenesis. However, it had been unclear if the developmental stage-specific alternative splicing facilitated by RBM24 contributes to sarcomere assembly and cardiogenesis. Our aim is to study the molecular mechanism by which RBM24 regulates cardiogenesis and sarcomere assembly in a temporal-dependent manner. METHODS: We ablated RBM24 from human embryonic stem cells (hESCs) using CRISPR/Cas9 techniques. RESULTS: Although RBM24-/- hESCs still differentiated into sarcomere-hosting cardiomyocytes, they exhibited disrupted sarcomeric structures with punctate Z-lines due to impaired myosin replacement during early myofibrillogenesis. Transcriptomics revealed >4000 genes regulated by RBM24. Among them, core myofibrillogenesis proteins (eg, ACTN2 [α-actinin 2], TTN [titin], and MYH10 [non-muscle myosin IIB]) were misspliced. Consequently, MYH6 (muscle myosin II) cannot replace nonmuscle myosin MYH10, leading to myofibrillogenesis arrest at the early premyofibril stage and causing disrupted sarcomeres. Intriguingly, we found that the ABD (actin-binding domain; encoded by exon 6) of the Z-line anchor protein ACTN2 is predominantly excluded from early cardiac differentiation, whereas it is consistently included in human adult heart. CRISPR/Cas9-mediated deletion of exon 6 from ACTN2 in hESCs, as well as forced expression of full-length ACTN2 in RBM24-/- hESCs, further corroborated that inclusion of exon 6 is critical for sarcomere assembly. Overall, we have demonstrated that RBM24-facilitated inclusion of exon 6 in ACTN2 at distinct stages of cardiac differentiation is evolutionarily conserved and crucial to sarcomere assembly and integrity. CONCLUSIONS: RBM24 acts as a master regulator to modulate the temporal dynamics of core myofibrillogenesis genes and thereby orchestrates sarcomere organization.


Asunto(s)
Empalme Alternativo , Células Madre Embrionarias Humanas/metabolismo , Desarrollo de Músculos , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/metabolismo , Actinina/genética , Actinina/metabolismo , Diferenciación Celular , Línea Celular , Conectina/genética , Conectina/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Miocitos Cardíacos/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Proteínas de Unión al ARN/genética
6.
J Cell Mol Med ; 25(24): 11142-11156, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34738311

RESUMEN

Somatic copy number alterations (CNAs) are a genomic hallmark of cancers. Among them, the chromosome 17p13.1 deletions are recurrent in hepatocellular carcinoma (HCC). Here, utilizing an integrative omics analysis, we screened out a novel tumour suppressor gene within 17p13.1, myosin heavy chain 10 (MYH10). We observed frequent deletions (~38%) and significant down-regulation of MYH10 in primary HCC tissues. Deletion or decreased expression of MYH10 was a potential indicator of poor outcomes in HCC patients. Knockdown of MYH10 significantly promotes HCC cell migration and invasion in vitro, and overexpression of MYH10 exhibits opposite effects. Further, inhibition of MYH10 markedly potentiates HCC metastasis in vivo. We preliminarily elucidated the mechanism by which loss of MYH10 promotes HCC metastasis by facilitating EGFR pathway activation. In conclusion, our study suggests that MYH10, a candidate target gene for 17p13 deletion, acts as a tumour suppressor and may serve as a potential prognostic indicator for HCC patients.


Asunto(s)
Carcinoma Hepatocelular/etiología , Deleción Cromosómica , Cromosomas Humanos Par 17 , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/etiología , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Transducción de Señal , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Biología Computacional , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Ratones , Pronóstico , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Cell Sci ; 134(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34730180

RESUMEN

The mechanisms by which the mechanoresponsive actin crosslinking protein α-actinin-4 (ACTN4) regulates cell motility and invasiveness remain incompletely understood. Here, we show that, in addition to regulating protrusion dynamics and focal adhesion formation, ACTN4 transcriptionally regulates expression of non-muscle myosin IIB (NMM IIB; heavy chain encoded by MYH10), which is essential for mediating nuclear translocation during 3D invasion. We further show that an indirect association between ACTN4 and NMM IIA (heavy chain encoded by MYH9) mediated by a functional F-actin cytoskeleton is essential for retention of NMM IIA at the cell periphery and modulation of focal adhesion dynamics. A protrusion-dependent model of confined migration recapitulating experimental observations predicts a dependence of protrusion forces on the degree of confinement and on the ratio of nucleus to matrix stiffness. Together, our results suggest that ACTN4 is a master regulator of cancer invasion that regulates invasiveness by controlling NMM IIB expression and NMM IIA localization. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Miosina Tipo IIA no Muscular , Actinina/genética , Actinas/genética , Movimiento Celular/genética , Humanos , Cadenas Pesadas de Miosina , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIB no Muscular/genética
8.
Elife ; 102021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34374341

RESUMEN

Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis.


Asunto(s)
Elasticidad , Miosina Tipo II/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Movimiento Celular/fisiología , Homeostasis , Humanos , Modelos Teóricos , Miosina Tipo II/clasificación , Miosina Tipo II/genética , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIB no Muscular/genética , Isoformas de Proteínas
9.
J Thromb Haemost ; 19(9): 2287-2301, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34060193

RESUMEN

BACKGROUND: GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE: To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD: A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS: The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION: The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.


Asunto(s)
Factor de Transcripción GATA1 , Megacariocitos , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Trombocitopenia , Plaquetas , Factor de Transcripción GATA1/genética , Silenciador del Gen , Humanos , Trombocitopenia/genética , Trombopoyesis/genética , Factores de Transcripción
10.
Elife ; 102021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33871354

RESUMEN

During the first days of mammalian development, the embryo forms the blastocyst, the structure responsible for implanting the mammalian embryo. Consisting of an epithelium enveloping the pluripotent inner cell mass and a fluid-filled lumen, the blastocyst results from a series of cleavage divisions, morphogenetic movements, and lineage specification. Recent studies have identified the essential role of actomyosin contractility in driving cytokinesis, morphogenesis, and fate specification, leading to the formation of the blastocyst. However, the preimplantation development of contractility mutants has not been characterized. Here, we generated single and double maternal-zygotic mutants of non-muscle myosin II heavy chains (NMHCs) to characterize them with multiscale imaging. We found that Myh9 (NMHC II-A) is the major NMHC during preimplantation development as its maternal-zygotic loss causes failed cytokinesis, increased duration of the cell cycle, weaker embryo compaction, and reduced differentiation, whereas Myh10 (NMHC II-B) maternal-zygotic loss is much less severe. Double maternal-zygotic mutants for Myh9 and Myh10 show a much stronger phenotype, failing most of the attempts of cytokinesis. We found that morphogenesis and fate specification are affected but nevertheless carry on in a timely fashion, regardless of the impact of the mutations on cell number. Strikingly, even when all cell divisions fail, the resulting single-celled embryo can initiate trophectoderm differentiation and lumen formation by accumulating fluid in increasingly large vacuoles. Therefore, contractility mutants reveal that fluid accumulation is a cell-autonomous process and that the preimplantation program carries on independently of successful cell division.


Asunto(s)
Blastocisto/metabolismo , División Celular , Mutación , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Animales , Ciclo Celular , Diferenciación Celular , Citocinesis , Bases de Datos Genéticas , Técnicas de Cultivo de Embriones , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía por Video , Morfogénesis , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Factores de Tiempo , Imagen de Lapso de Tiempo
11.
Cell Prolif ; 54(2): e12987, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33415745

RESUMEN

OBJECTIVES: Inappropriate or excessive compression applied to intervertebral disc (IVD) contributes substantially to IVD degeneration. The actomyosin system plays a leading role in responding to mechanical stimuli. In the present study, we investigated the roles of myosin II isoforms in the compression stress-induced senescence of nucleus pulposus (NP) cells. MATERIAL AND METHODS: Nucleus pulposus cells were exposed to 1.0 MPa compression for 0, 12, 24 or 36 hours. Immunofluorescence and co-immunoprecipitation analysis were used to measure the interaction of myosin IIA and IIB with actin. Western blot analysis and immunofluorescence staining were used to detect nuclear expression and nuclear localization of MRTF-A. In addition, the expression levels of p-RhoA/RhoA, ROCK1/2 and p-MLC/MLC were measured in human NP cells under compression stress and in degenerative IVD tissues. RESULTS: Compression stress increased the interaction of myosin IIA and actin, while the interaction of myosin IIB and actin was reduced. The actomyosin cytoskeleton remodelling was involved in the compression stress-induced fibrotic phenotype mediated by MRTF-A nuclear translocation and inhibition of proliferation in NP cells. Furthermore, RhoA/ROCK1 pathway activation mediated compression stress-induced human NP cells senescence by regulating the interaction of myosin IIA and IIB with actin. CONCLUSIONS: We for the first time investigated the regulation of actomyosin cytoskeleton in human NP cells under compression stress. It provided new insights into the development of therapy for effectively inhibiting IVD degeneration.


Asunto(s)
Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Estrés Mecánico , Actinas/metabolismo , Actomiosina/metabolismo , Células Cultivadas , Senescencia Celular , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Metaloproteinasa 3 de la Matriz/metabolismo , Miosina Tipo IIA no Muscular/antagonistas & inhibidores , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIB no Muscular/antagonistas & inhibidores , Miosina Tipo IIB no Muscular/genética , Núcleo Pulposo/citología , Núcleo Pulposo/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transactivadores/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/metabolismo
12.
J Cell Physiol ; 236(2): 1281-1294, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32654195

RESUMEN

Cardiomyocyte migration represents a requisite event of cardiogenesis and the regenerative response of the injured adult zebrafish and neonatal rodent heart. The present study tested the hypothesis that the appearance of the intermediate filament protein nestin in neonatal rat ventricular cardiomyocytes (NNVMs) was associated in part with the acquisition of a migratory phenotype. The cotreatment of NNVMs with phorbol 12,13-dibutyrate (PDBu) and the p38α/ß mitogen-activated protein kinase inhibitor SB203580 led to the de novo synthesis of nestin. The intermediate filament protein was subsequently reorganized into a filamentous pattern and redistributed to the leading edge of elongated membrane protrusions translating to significant lengthening of NNVMs. PDBu/SB203580 treatment concomitantly promoted the reorganization of nonmuscle myosin IIB (NMIIB) located predominantly at the periphery of the plasma membrane of NNVMs to a filamentous phenotype extending to the leading edge of elongated membrane protrusions. Coimmunoprecipitation assay revealed a physical interaction between NMIIB and nestin after PDBu/SB203580 treatment of NNVMs. In wild-type and heterozygous NMIIB embryonic hearts at E11.5-E14.5 days, nestin immunoreactivity was identified in a subpopulation of cardiomyocytes elongating perpendicular to the compact myocardium, at the leading edge of nascent trabeculae and during thickening of the compact myocardium. In mutant embryonic hearts lacking NMIIB protein expression, trabeculae formation was reduced, the compact myocardium significantly thinner and nestin immunoreactivity undetectable in cardiomyocytes at E14.5 days. These data suggest that NMIIB and nestin may act in a coordinated fashion to facilitate the acquisition of a migratory phenotype in neonatal and embryonic cardiomyocytes.


Asunto(s)
Corazón/crecimiento & desarrollo , Proteína Quinasa 14 Activada por Mitógenos/genética , Nestina/biosíntesis , Miosina Tipo IIB no Muscular/genética , Organogénesis/genética , Animales , Animales Recién Nacidos/genética , Animales Recién Nacidos/crecimiento & desarrollo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/genética , Regulación del Desarrollo de la Expresión Génica/genética , Corazón/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/crecimiento & desarrollo , Humanos , Imidazoles/farmacología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Nestina/genética , Forbol 12,13-Dibutirato/farmacología , Piridinas/farmacología , Ratas , Pez Cebra/genética
13.
Dev Biol ; 470: 49-61, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33188738

RESUMEN

Mutations in non-muscle myosin 2A (NM2A) encompass a wide spectrum of anomalies collectively known as MYH9-Related Disease (MYH9-RD) in humans that can include macrothrombocytopenia, glomerulosclerosis, deafness, and cataracts. We previously created mouse models of the three mutations most frequently found in humans: R702C, D1424N, and E1841K. While homozygous R702C and D1424N mutations are embryonic lethal, we found homozygous mutant E1841K mice to be viable. However the homozygous male, but not female, mice were infertile. Here, we report that these mice have reduced testis size and defects in actin-associated junctions in Sertoli cells, resulting in inability to form the blood-testis barrier and premature germ cell loss. Moreover, compound double heterozygous (R702C/E1841K and D1424/E1841K) males show the same abnormalities in testes as E1841K homozygous males. Conditional ablation of either NM2A or NM2B alone in Sertoli cells has no effect on fertility and testis size, however deletion of both NM2A and NM2B in Sertoli cells results in infertility. Isolation of mutant E1841K Sertoli cells reveals decreased NM2A and F-actin colocalization and thicker NM2A filaments. Furthermore, AE1841K/AE1841K and double knockout Sertoli cells demonstrate microtubule disorganization and increased tubulin acetylation, suggesting defects in the microtubule cytoskeleton. Together, these results demonstrate that NM2A and 2B paralogs play redundant roles in Sertoli cells and are essential for testes development and normal fertility.


Asunto(s)
Actomiosina/metabolismo , Citoesqueleto/ultraestructura , Infertilidad Masculina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Células de Sertoli/fisiología , Actinas/metabolismo , Actomiosina/química , Animales , Barrera Hematotesticular/metabolismo , Forma de la Célula , Citoesqueleto/metabolismo , Infertilidad Masculina/patología , Infertilidad Masculina/fisiopatología , Masculino , Ratones , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Tamaño de los Órganos , Permeabilidad , Mutación Puntual , Células de Sertoli/citología , Células de Sertoli/ultraestructura , Testículo/patología , Tubulina (Proteína)/metabolismo
14.
Cell Death Dis ; 11(11): 952, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154354

RESUMEN

C-terminal fragments of Tar DNA-binding protein 43 (TDP-43) have been identified as the major pathological protein in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, how they affect cellular toxicity and neurodegeneration, including the modulation process remains unknown. This study revealed that the C-terminal fragment of TDP-43 (TDP-25) was localized primarily to mitochondria and caused abnormal mitochondrial morphology, inducing Parkin-mediated mitophagy. Also, we discovered that the knockdown of selective autophagy receptors, such as TAX1BP, Optineurin, or NDP52 caused TDP-25 accumulation, indicating that TDP-25 was degraded by mitophagy. Interestingly, myosin IIB, a nonmuscle type of myosin and actin-based motor protein, is mostly colocalized to TDP-25 associated with abnormal mitochondria. In addition, myosin IIB inhibition by siRNA or blebbistatin induced mitochondrial accumulation of insoluble TDP-25 and Tom20, and reduced neuronal cell viability. Our results suggest a novel role of myosin IIB in mitochondrial degradation of toxic TDP-25. Therefore, we proposed that regulating myosin IIB activity might be a potential therapeutic target for neurodegenerative diseases associated with TDP-43 pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/metabolismo , Mitocondrias/patología , Mitofagia , Miosina Tipo IIB no Muscular/metabolismo , Fragmentos de Péptidos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Miosina Tipo IIB no Muscular/genética , Fragmentos de Péptidos/genética , Ubiquitina-Proteína Ligasas/genética
15.
Mol Med Rep ; 22(3): 1783-1792, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32705176

RESUMEN

The aim of the present study was to explore whether the hypertrophy of H9C2 cardiomyocytes was induced by high glucose, to investigate whether the calcium channel inhibitor (Norvasc) could inhibit this process and to clarify the possible signaling pathways. The morphology of H9C2 cells was observed under an optical microscope, and the cell surface area was measured by Image Pro Plus 6.1 software. Furthermore, fluorescence spectrophotometry was used to detect intracellular calcium concentration ([Ca2+]i). ELISA was performed to detect calcineurin (CaN) activity; reverse transcription­quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of CaN Aß subunit (CnAß), nuclear factor of activated T cells 3 (NFAT3) and ß type myosin heavy chain (ß­MHC). Cell size was increased with the increase in glucose concentration of culture medium at 48 and 72 h, respectively, and decreased with the addition of Norvasc compared with those without Norvasc (P<0.05). There was no significant difference in cell size with the addition of Norvasc compared with cells cultured with 5 mM glucose (P>0.05). The average [Ca2+]i activity of single cells in the 48­ and 72­h culture groups treated with 50 mM glucose was significantly higher than cells treated with 5 mM glucose (P<0.05); and the fluorescent value of average [Ca2+]i activity of single cells was lower, following the addition of Norvasc than that without Norvasc (P<0.05). CaN activity in the 48­ and 72­h culture group treated with 50 mM glucose was markedly higher than that treated with 5 mM glucose, and the activity of CaN notably decreased with the addition of Norvasc compared with those without Norvasc. The mRNA and protein expression levels of CnAß, NFAT3 and ß­MHC in the 48­ and 72­h culture groups treated with 50 mM glucose were all significantly higher than those treated with 5 mM glucose (P<0.05). The mRNA and protein expression of CnAß, NFAT3 and ß­MHC cultured with 50 mM glucose were significantly decreased following the addition of Norvasc (P<0.05). Thus, the calcium channel inhibitor Norvasc may inhibit high glucose­induced hypertrophy of H9C2 cardiomyocytes by inhibiting the Ca2+­CaN­NFAT3 signaling pathway.


Asunto(s)
Amlodipino/farmacología , Cardiotónicos/farmacología , Glucosa/efectos adversos , Miocitos Cardíacos/citología , Factores de Transcripción NFATC/genética , Proteínas del Tejido Nervioso/genética , Animales , Calcineurina/genética , Calcineurina/metabolismo , Calcio/metabolismo , Línea Celular , Medios de Cultivo/química , Regulación de la Expresión Génica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Ratas
16.
J Cell Biol ; 219(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32311005

RESUMEN

Microtubule-associated serine/threonine-protein kinase-like (MASTL) is a mitosis-accelerating kinase with emerging roles in cancer progression. However, possible cell cycle-independent mechanisms behind its oncogenicity remain ambiguous. Here, we identify MASTL as an activator of cell contractility and MRTF-A/SRF (myocardin-related transcription factor A/serum response factor) signaling. Depletion of MASTL increased cell spreading while reducing contractile actin stress fibers in normal and breast cancer cells and strongly impairing breast cancer cell motility and invasion. Transcriptome and proteome profiling revealed MASTL-regulated genes implicated in cell movement and actomyosin contraction, including Rho guanine nucleotide exchange factor 2 (GEF-H1, ARHGEF2) and MRTF-A target genes tropomyosin 4.2 (TPM4), vinculin (VCL), and nonmuscle myosin IIB (NM-2B, MYH10). Mechanistically, MASTL associated with MRTF-A and increased its nuclear retention and transcriptional activity. Importantly, MASTL kinase activity was not required for regulation of cell spreading or MRTF-A/SRF transcriptional activity. Taken together, we present a previously unknown kinase-independent role for MASTL as a regulator of cell adhesion, contractility, and MRTF-A/SRF activity.


Asunto(s)
Citoesqueleto de Actina/enzimología , Adhesión Celular/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal/genética , Transactivadores/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica , Humanos , Integrinas/genética , Integrinas/metabolismo , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteoma/metabolismo , ARN Interferente Pequeño , Factores de Intercambio de Guanina Nucleótido Rho/genética , Fibras de Estrés/genética , Fibras de Estrés/metabolismo , Transactivadores/genética , Transcriptoma/genética , Tropomiosina/genética , Tropomiosina/metabolismo , Vinculina/genética , Vinculina/metabolismo
17.
Elife ; 92020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32195665

RESUMEN

Neurons have a membrane periodic skeleton (MPS) composed of actin rings interconnected by spectrin. Here, combining chemical and genetic gain- and loss-of-function assays, we show that in rat hippocampal neurons the MPS is an actomyosin network that controls axonal expansion and contraction. Using super-resolution microscopy, we analyzed the localization of axonal non-muscle myosin II (NMII). We show that active NMII light chains are colocalized with actin rings and organized in a circular periodic manner throughout the axon shaft. In contrast, NMII heavy chains are mostly positioned along the longitudinal axonal axis, being able to crosslink adjacent rings. NMII filaments can play contractile or scaffolding roles determined by their position relative to actin rings and activation state. We also show that MPS destabilization through NMII inactivation affects axonal electrophysiology, increasing action potential conduction velocity. In summary, our findings open new perspectives on axon diameter regulation, with important implications in neuronal biology.


Asunto(s)
Actomiosina/fisiología , Axones/fisiología , Conducción Nerviosa/fisiología , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Animales , Línea Celular , Humanos , Ratones , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIB no Muscular/genética , Ratas
18.
Genes (Basel) ; 11(2)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053968

RESUMEN

Improving the genetic process of growth traits is one of the major goals in the beef cattle industry, as it can increase meat production and reduce the cost of raising animals. Although several quantitative trait loci affecting growth traits in beef cattle have been identified, the genetic architecture of these economically important traits remains elusive. This study aims to map single nucleotide polymorphisms (SNPs) and genes associated with birth weight (BW), yearling weight (YW), average daily gain from birth to yearling (BYADG), and body weight at the age of 18 months (18MW) in a Chinese Simmental beef cattle population using a weighted, single-step, genome-wide association study (wssGWAS). Phenotypic and pedigree data from 6022 animals and genotypes from 744 animals (596,297 SNPs) were used for an association analysis. The results showed that 66 genomic windows explained 1.01-20.15% of the genetic variance for the four examined traits, together with the genes near the top SNP within each window. Furthermore, the identified genomic windows (>1%) explained 50.56%, 57.71%, 61.78%, and 37.82% of the genetic variances for BW, YW, BYADG, and 18MW, respectively. Genes with potential functions in muscle development and regulation of cell growth were highlighted as candidates for growth traits in Simmental cattle (SQOR and TBCB for BW, MYH10 for YW, RLF for BYADG, and ARHGAP31 for 18MW). Moreover, we found 40 SNPs that had not previously been identified as being associated with growth traits in cattle. These findings will further advance our understanding of the genetic basis for growth traits and will be useful for the molecular breeding of BW, YW, BYADG, and 18MW in the context of genomic selection in beef cattle.


Asunto(s)
Bovinos/crecimiento & desarrollo , Bovinos/genética , Estudio de Asociación del Genoma Completo , Genómica , Carne Roja/normas , Animales , Peso al Nacer/genética , Cruzamiento , Bovinos/metabolismo , Femenino , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Genotipo , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
19.
PLoS Genet ; 15(6): e1008228, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31220078

RESUMEN

Dendrite growth is constrained by a self-avoidance response that induces retraction but the downstream pathways that balance these opposing mechanisms are unknown. We have proposed that the diffusible cue UNC-6(Netrin) is captured by UNC-40(DCC) for a short-range interaction with UNC-5 to trigger self-avoidance in the C. elegans PVD neuron. Here we report that the actin-polymerizing proteins UNC-34(Ena/VASP), WSP-1(WASP), UNC-73(Trio), MIG-10(Lamellipodin) and the Arp2/3 complex effect dendrite retraction in the self-avoidance response mediated by UNC-6(Netrin). The paradoxical idea that actin polymerization results in shorter rather than longer dendrites is explained by our finding that NMY-1 (non-muscle myosin II) is necessary for retraction and could therefore mediate this effect in a contractile mechanism. Our results also show that dendrite length is determined by the antagonistic effects on the actin cytoskeleton of separate sets of effectors for retraction mediated by UNC-6(Netrin) versus outgrowth promoted by the DMA-1 receptor. Thus, our findings suggest that the dendrite length depends on an intrinsic mechanism that balances distinct modes of actin assembly for growth versus retraction.


Asunto(s)
Actinas/genética , Proteínas de Caenorhabditis elegans/genética , Células Dendríticas/metabolismo , Netrinas/genética , Neuronas/metabolismo , Citoesqueleto de Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de la Membrana/genética , Cadenas Pesadas de Miosina/genética , Proteínas del Tejido Nervioso/genética , Miosina Tipo IIB no Muscular/genética
20.
Commun Biol ; 2: 95, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30886905

RESUMEN

The morphogenesis of mammalian embryonic external genitalia (eExG) shows dynamic differences between males and females. In genotypic males, eExG are masculinized in response to androgen signaling. Disruption of this process can give rise to multiple male reproductive organ defects. Currently, mechanisms of androgen-driven sexually dimorphic organogenesis are still unclear. We show here that mesenchymal-derived actomyosin contractility, by MYH10, is essential for the masculinization of mouse eExG. MYH10 is expressed prominently in the bilateral mesenchyme of male eExG. Androgen induces MYH10 protein expression and actomyosin contractility in the bilateral mesenchyme. Inhibition of actomyosin contractility through blebbistatin treatment and mesenchymal genetic deletion induced defective urethral masculinization with reduced mesenchymal condensation. We also suggest that actomyosin contractility regulates androgen-dependent mesenchymal directional cell migration to form the condensation in the bilateral mesenchyme leading to changes in urethral plate shape to accomplish urethral masculinization. Thus, mesenchymal-derived actomyosin contractility is indispensable for androgen-driven urethral masculinization.


Asunto(s)
Actomiosina/metabolismo , Andrógenos/metabolismo , Uretra/fisiología , Animales , Biomarcadores , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Masculino , Ratones , Modelos Biológicos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...